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Abstract. Parapatric speciation is studied using an individual-based model with sexual reproduction. We
combine the theory of mutation accumulation for biological ageing with an environmental selection pressure
that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and
genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching
and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights
into the population dynamics of speciation on a geographical landscape and the disruptive selection that
leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory
ingredient to obtain speciation in large populations at low gene flow.

PACS. 87.10.+e General theory and mathematical aspects – 87.23.-n Ecology and evolution – 87.23.Cc
Population dynamics and ecological pattern formation – 87.23.Kg Dynamics of evolution

1 Introduction

Several types of speciation are found in the literature, and
the existence of some of them is still controversial. The
two most discussed ones are the sympatric and the al-
lopatric speciations. The widely accepted mechanism of
allopatric speciation is the appearance of a geographical
barrier between two populations of the same species. Due
to genetic drift and natural selection along several gen-
erations, these populations develop so many differences
that they become reproductively isolated, that is, even if
the barrier is removed the populations can no longer in-
terbreed. In fact, speciation in allopatry is known to be
a slow process [1]. The other form of speciation, the by
far more complex sympatric speciation where there is no
physical barrier to prevent gene flow, is supposed to be a
fast process [2]. Assortative mating (non-random mating)
and competition for different niches seem to be its essen-
tial ingredients [2–10], although some authors claim that
assortative mating alone is enough to produce reproduc-
tive isolation followed by sympatric speciation [11]. On the
other side, the model of [12] suggests that a small gene flux
between different populations does not prevent speciation
if the hybrids present a low viability.

There have been great achievements to explain the pro-
cesses of speciation in the last decade. The combination
of laboratory experiments [13], measurements [14–16] and
numerical models [2–9,12,17] gave enormous insights, es-
pecially into the theory of sympatric speciation and the
processes driving it. However, less numerical research has
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been done focusing on parapatric speciation, a mixture
of speciating in sympatry and in allopatry (for a review
see [18,19]). The population occupies a spatially con-
tinuous habitat and adaptation evolves from a gradient,
such as an increasing altitude or a continuous change of
food resources [20–22], which may or not result in specia-
tion [3,23,24].

Speciation in parapatry is hardly controversial be-
cause even weak disruptive selection can cause sharp di-
vergence [21,25,26]. The interesting feature demonstrated
by Doebeli and Dieckmann [27] was that discrete clus-
ters emerge, even when the optimal trait value changes
linearly. They explained the evolution of the clusters as
a consequence of a narrow frequency-dependent competi-
tion, similarly to the sympatric model of Dieckmann and
Doebeli [8]. However, Polechova and Barton [28] have ar-
gued that the clustering in Doebeli and Dieckmann can-
not be due to competition, because it occurs even in
the limit of no competition. Rather, they propose that
it arises because the densities of similar phenotypes are
only weakly coupled so that large differences can be gen-
erated by weak perturbations–in this case, due to edge ef-
fects. The same explanation was independently presented
by Gavrilets [18]. Very recently, Brigatti and collabora-
tors (q-bio.PE/0505017) have obtained speciation using
a strategy similar to that of Doebeli and Dieckmann,
and there they present an analysis of the controversy just
mentioned.

Here we modify the Penna model [29–31], which is
based on the mutation accumulation hypothesis for bi-
ological ageing, in order to include an environmental
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selection pressure that, besides acting according to indi-
viduals phenotypes, also varies according to their posi-
tions on a spatial lattice. Using this strategy we study un-
der which conditions parapatric speciation happens and
observe that it depends strongly on the fluctuations of
the system, as already obtained in previous simulations
of sympatric speciation [9,17]. The connection of the in-
dividual deaths with their phenotypic traits and lattice
positions through a simple function is shown to produce a
complex behaviour of the whole population, that may or
may not yield speciation.

Our implementation of the sexual Penna model with a
phenotypic trait on a spatial lattice is based on [32] and [9].
We succeed in reproducing qualitatively the results of [33],
although there speciation is obtained just with a mecha-
nism of assortative mating, while in our case speciation
is obtained with the implementation of an environment
where the optimal trait value varies linearly in space, and
assortative mating is not necessary.

In the next section we explain our model, and in Sec-
tion 3 we present the results. In Section 4 we discuss some
relevant aspects of the model and Section 5 contains the
conclusions.

2 Model

We consider sexual reproduction where individuals are
diploids and half of the population is male and half is
female. Their genomes are represented by two pairs of
bit-strings, each string with 32 bits; each pair is read in
parallel. The first pair of bit-strings corresponds to the
“chronological genome” of the Penna model and presents
an age-structure. The second pair is non-structured and
codes for a given phenotypic trait, like the individual’s
size or colour. Both pairs are subjected to crossing and
recombination, in the moment of reproduction (Fig. 1),
but these two pairs are related to different genetic charac-
teristics and work in a completely independent way. Let
us describe now the role of each pair, separately.

2.1 The age-structured part of the genomes

Each one of the 32 possible bit-positions of this pair (the
first one in Fig. 1) represents a period in each individual’s
life, which means that each individual can live at most for
32 periods. If we consider each period as one year, ages
vary between 0 ≤ age ≤ 32 years. Bits 1 correspond to a
harmful recessive allele. If an individual carries two bits
1 at the same bit-position (homozygous), say position (or
age) i, it means that the individual will start to suffer the
effects of a genetic disease from its ith year of life on. In
dominant positions one bit set to one is enough to switch
on a disease. At the beginning of the simulation we choose
randomly 5 bit-positions to be the dominant ones. They
are the same for all individuals and remain fixed during
the whole simulation. At the beginning of every iteration a
new bit-position of each individual’s chronological genome
is read and its age is increased by one; then the actual
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Fig. 1. Reproduction process. Each pair of bit-strings is cut at
a random position and two complementary pieces are recom-
bined to form a gamete. Mutations are then introduced at ran-
dom positions in both parts (arrows). For the age-structured
part (left part), only bad mutations are allowed, while for the
non-structured part (right part), both back and forward mu-
tations can randomly occur. The union of the male and female
gametes forms the offspring genome.

number of accumulated diseases is computed: if this num-
ber reaches a threshold T , the individual dies due to the
accumulation of inherited mutations.

At every iteration, females with age ≥ R, the min-
imum reproductive age, search for a partner also with
age ≥ R to breed, and produce offspring with a birth
rate b. As already mentioned, the offspring genome is con-
structed by crossing, recombining and mutating each par-
ent’s genome. The whole process is illustrated in Figure 1.
First the chronological genome of the mother is cut at a
random position and two random complementary pieces
are joined to form a female gamete. Deleterious mutations
(0 → 1) at random positions are then introduced, with a
mutation rate m. The same process occurs with the fa-
ther’s chronological genome and the union of the two ga-
metes completes the offspring genome. In this part of the
genome only deleterious mutations (0 → 1) may appear,
since they are 100 times more frequent than the backward
mutations [34]. In this case, if the randomly chosen bit of
the parent genome is already one, it remains one in the off-
spring genome (no mutation occurs). On the other hand,
if the chosen bit is zero, it is set to one in the offspring
genome.

2.2 The phenotypic trait

The second pair of bit-strings of each genome is translated
into some phenotypic characteristic of the individual [17],
related to its ability in surviving in a given environment
(ecology). This non-structured pair also suffers crossing,
recombination and mutations, (Fig. 1), at the same time
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it occurs for the age-structured pair, that is, at the mo-
ment of reproduction. However, for this pair both forward
(0 → 1) and backward (1 → 0) mutations are allowed,
with a rate mp. Moreover, 16 of the 32 bit-positions are
randomly chosen to be the dominant ones, and the remain-
ing 16 to be the recessive ones. The effective number of
bits 1, taking into account the dominance, corresponds to
a given phenotypic characteristic. This number, which we
call the phenotype number n, is an integer between zero
and 32. For example, we may consider that small values of
n correspond to small sized individuals, while large values
of n denote big ones. Observe that in principle a particular
value of n has nothing to do with the individual’s fitness.
That is why we allow for mutations in both directions in
this part of the genome. A given value of n will be ad-
vantageous or not depending on the environment, that is,
the selective character of the phenotype will be expressed
according to the ecology, which is introduced as follows.

2.3 Spatial lattice and ecology

The individuals are distributed on a two dimensional
square lattice. They move at every iteration, with a rate
mm, to a randomly chosen less or equally populated near-
est neighbouring site. Movements can be carried out more
than one time per iteration (mm > 1). If all nearest neigh-
bours sites are more populated than the current individ-
ual’s site, the movement is not carried out. This strategy
guarantees a fast and balanced distribution of individuals
over the whole landscape. The boundary conditions in this
model are reflective.

The reproductive females select their mating partners
randomly from the reproductive males localised at the
same or at a nearest neighbour site. Reproduction be-
tween different phenotypes is not forbidden. Offspring are
distributed into empty nearest neighbouring sites. If there
is no empty site, the offspring is not produced. In this
way the population size is controlled by the size of the
lattice [35], and there is no need to use the random killing
Verhulst factor, present in the traditional version of the
Penna model to avoid unlimited population growth.

The interaction between phenotypic trait and geo-
graphical position on a square lattice of linear size L is
given by:

E(x, n) = S ·
(
1 −

∣∣∣g(x) − n

32

∣∣∣
)

, (1)

which we call the ecological function. It gives the proba-
bility of an individual dying, at every iteration, depending
only on its own x-position and phenotype number. This
function is independent of the y-position of the individ-
ual and there is no direct competition, neither with indi-
viduals on neighbouring sites nor with individuals having
similar phenotypes. In this way, edge effects for extreme
phenotypes should not play any role in our approach. The
parameter S is the strength of the interaction and varies
between zero and one. The larger the value of S is, the
stronger the selection pressure acting on the individuals.
The coordinate function is given by g(x) = x

L−1 , where the
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Fig. 2. Behaviour of the ecological function (or probability to
die according to x-position and phenotype) E(x,n). Individu-
als with high or low n survive better on opposite sides of the
lattice whereas the ones with intermediate phenotype numbers
have a higher death probability at intermediate values of x.

coordinate x is an integer between zero and L−1. For ex-
treme phenotypes with n = 0, the perfect region in which
to live corresponds to x = L − 1 where E(L − 1, 0) = 0,
while for extreme phenotypes with n = 32 the perfect re-
gion corresponds to x = 0. Individuals with intermediate
phenotypes also live better at the extremes of the lattice,
but are less fitted than those with extreme phenotypes
living in the correct extreme of the lattice. Figure 2 illus-
trates the ecological function behaviour for three different
values of n.

3 Results

In this section we describe the relevant features of spe-
ciation found with our simulations, that is, we focus on
the interaction between phenotypic trait and the lattice.
We want to make it clear that simulations without ageing
also give speciation as a possible outcome. That is, we have
also run the program considering the mutation rate m = 0,
which means that all chronological genomes remain only
with zeroes and individuals that are not killed due to their
phenotypes can survive up to the age 32. These simula-
tions give qualitatively the same results. However, ageing
not only makes the model more realistic, but also directly
illustrates the hybrids’ viability, since it allows us to check
if they live enough to produce offspring or not.

The fixed parameters that we adopt in the simulations
are:

i) threshold number of genetic diseases T = 3;
ii) minimum reproductive age R = 8;
iii) birth rate b = 4;
iv) rate of bad mutations in the chronological genome

m = 1;
v) number of dominant positions in the chronological

genome D = 5;
vi) mutation rate of the phenotypic trait mp = 0.15 or

mp = 0.2;
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Fig. 3. The evolution of phenotypic frequency (given by the
second pair of bit-strings) versus time. The same set of parame-
ters may or not yield speciation for different random seeds. The
central curve (solid line, squares) correspond to the distribu-
tion of phenotype numbers before switching on the ecological
function (t = 1000 time-steps). The final distribution when
speciation occurs is given by the double-peaked distribution
(solid line, crosses). The dashed line with stars corresponds
to the final distribution for a case where speciation has not
occurred; the dashed line with triangles shows the intermedi-
ary distribution in the course of speciation. The parameters:
S = 0.24, mm = 0.99 and mp = 0.2 on a 500×500 lattice with
around 400 000 individuals.

vii) number of dominant positions in the phenotypic trait
Dp = 16.

The relevant parameters for speciation are the movement
rate mm, the lattice size L and the strength S of the en-
vironmental pressure.

We start the simulations with all the genomes ran-
domly filled with zeroes and ones, and all individuals
randomly distributed on the lattice. In order to reach a
genetically stable initial population, we run the simula-
tions without any ecological function for 1000 iterations.
During this period the dynamics of the population is nei-
ther affected by the phenotype numbers nor by the lattice
positions of the individuals. The initial distribution of the
phenotype numbers is regulated solely by the mutations,
and shows a Gaussian behaviour (central curve of Fig. 3).

After these transient steps, the ecology is abruptly
changed by setting the ecological function as an additional
death probability. Disruptive selection driven by the ecol-
ogy leads to a better survival of individuals with high and
low phenotype numbers, depending on their current posi-
tions on the lattice. Three different situations, described
below, can be observed, where the environmental pressure
and the movement rate are the crucial parameters.

i) At low selection pressures (S small), and indepen-
dently of the movement rate, the distribution of the phe-
notype numbers remains unaltered (Gaussian). The pop-
ulation decreases slightly at intermediate positions on the
x-direction, but during the entire simulation individuals
stay in contact over the whole lattice. Gene flow prevents
disruptive selection from dividing the system into two sub-
populations.

ii) For intermediate selection pressures and for move-
ment rates around one movement per iteration (mm ∼
1.0), shortly after turning disruptive selection on, the sys-
tem reaches an extremely dynamical state where fluctua-
tions may or may not drive the system to divergence. In
the cases where speciation does not occur, the adaptation
of individuals on one of the lattice sides is faster than the
other, and due to gene flow their corresponding pheno-
types finally dominate the whole lattice (dashed-line with
stars in Fig. 3).

When phenotypic adaption is balanced, the distribu-
tion of phenotype numbers bifurcates. Figure 3 shows that
even in the case of speciation, the phenotypic distribution
usually drifts away from symmetry before bifurcating, but
the final and stable state corresponds to two populations
with different phenotypes. We emphasise that during the
speciation process the whole population stays in contact
and gene flow can not be neglected as in allopatric speci-
ation.

Speciation events are likely to occur with around 50%
probability in the interval S = [0.2, 0.27]. Below S = 0.15
and above S = 0.32 speciation nearly does not occur. Un-
fortunately, the long computational time needed for each
run make it difficult to obtain a good statistics of specia-
tion events for different values of S.

Figure 4 shows the typical spatial distributions of the
phenotypes at four different moments of the simulations.
Initially, the population is homogeneously distributed over
the whole lattice. As soon as the new ecology is turned on,
almost all individuals occupying the central x-positions
of the lattice die, and the population becomes temporar-
ily divided into two similar groups, with weak contact
between them. When the adaptation process of the ex-
treme phenotypes starts, offspring with intermediate phe-
notype numbers continue to be produced. As the adapta-
tion proceeds, competition with the more fitted extreme
phenotypes makes the intermediate ones disappear. Fi-
nally, when speciation occurs, each half of the lattice be-
comes mostly occupied by one of the two extreme phe-
notypes, respectively. The number of iterations needed
to reach the final distribution is about 5000, which cor-
responds to 625 generations. However, we would like to
emphasise that we have run our simulations for up to
100 000 time-steps, to be sure we were obtaining stable
distributions.

The final result of a simulation where no speciation
occurred, using the same parameters as in Figure 4 but
with another initial random seed, is illustrated in Figure 5.
In this case only one of the extreme phenotypes remains.

iii) Low movement rates or very high selection pres-
sures prevent speciation events. In both cases a great part
of the population dies out at the time when the ecological
function is set. Fluctuations dominate divergent adapta-
tion and the initial Gaussian distribution of phenotypes
moves to one of the extremes.

It is important to say that for small population sizes
fluctuations seem to always prevent speciation, indepen-
dently of the movement rate: no speciation events have
been obtained for lattice sizes smaller than L = 150, which
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Fig. 4. Illustration of the phenotype distribution on a 500 ×
500 lattice. The parameters are mm = 0.9, S = 0.25 and
mp = 0.1. Black sites are empty. The colours indicate the av-
erage value of the phenotype numbers (between yellow and
blue). Without disruptive selection, the initial population is
homogeneously distributed over the whole lattice (A). When
the ecological function is turned on the population is divided
into two regions with weak contact (B). Selection prefers dif-
ferent phenotypes with respect to the horizontal location of the
individuals and adaptation proceeds (C). Fluctuations decide
if the final result is speciation or if it is a single population
with phenotypically similar individuals. In case of speciation,
two phenotypically different populations can be easily distin-
guished, each one occupying one side of the lattice (D).

leads to a population of around 40 000 individuals. Lat-
tice sizes above 300×300 apparently do not increase the
probability to obtain speciation. Concerning the selection
pressure, it was also found by Doebeli [27] that very high
values of S prevent speciation.

In order to study the effect of assortative mating in our
simulations, we introduce the strategy used in [33] to pre-
vent the mating of extreme phenotypes (prezygotic isola-
tion). We measure the absolute difference of the phenotype
numbers of both male and female, before mating. If the
difference is larger than d, they can not reproduce. If there
is no appropriate male among the nearest neighbours, no
offspring is produced. Figure 6 shows the final phenotype
distributions for different strengths S of the ecological
function, in cases where speciation occurred. We compare
different results using random mating to one where assor-
tative mating is used, with d = 10. It can be seen that
assortative mating completely prevents the production of
hybrids with phenotype numbers around 16. Additionally,
the occurrence of speciation is controlled by the parame-
ter d, as in [33]. Very small values of d (d < 8) prevent
speciation due to the lack of genetic diversity, which is
an important ingredient for the distribution of phenotype
numbers to bifurcate. Assortative mating alone is not suf-
ficient to generate speciation. We carried out simulations
with S = 0 for different values of d, and no speciation
event occurred.

Fig. 5. Another random seed has driven the system to the
case of no speciation. One of the two sub-populations randomly
dominates and finally occupies the whole lattice. In this case,
the worst region of the lattice for the winning extreme pheno-
type to survive (left side in this figure) remains less populated
than the rest of the lattice, that is, the occupation is not uni-
form. The parameters are the same as in Figure 4.

Fig. 6. Comparison of the final states of the phenotype distri-
butions for different values of the parameter S. The stronger
the ecology is, the less frequent are the hybrids. Assortative
mating leads to the non-existence of hybrids, depicted by the
thick curve where d = 10. The movement rate mm = 0.9 and
the mutation rate related to the phenotype is mp = 0.15. The
lattice size is 500×500 and the population fluctuates around
400 000 individuals.

In order to know more about the gene flow between
different extreme phenotypes in case of random mating,
Figure 7 shows the histogram of the fraction of the pop-
ulation that dies at a given age, for different phenotype
numbers. The majority of the hybrids die at low ages and
do not generate offspring. This low viability of the hybrids
characterises a speciation process [12] in the presence of
random mating.

A cline is defined as a gradient in a measurable charac-
ter. Relative to the dispersal rate of a species, the slope of
a cline between regions is indicative of the extent to which
the inhabitants have differentiated. A steep cline means
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Fig. 7. Life span for different phenotype numbers. Most of the
hybrids die at early ages, before reproduction. The parameters
are the same as in Figure 4.

Fig. 8. Frequency of individuals with phenotype numbers n =
0, 16 and 32 for each position x of the lattice, averaged over
the last 10 000 time steps. The frequency of individuals with
n = 16 is almost zero for any position of the lattice, and so the
dotted line is barely visible in the plot. The parameters are the
same as in Figure 4.

sharp differentiation while a gentle cline means indistinct
divergence between areas [21]. In our case we choose the
phenotype number, n, as the measurable character. Fig-
ure 8 shows the fraction of individuals with n = 0, n = 16
and n = 32 at each position x of the lattice. A steep cline
can be observed for the n = 0 and n = 32 populations,
as well as the almost disappearance of the hybrids with
n = 16 in spite of the random mating.

A common outcome in Nature consists of phenotypi-
cally distinguishable forms at geographic extreme regions
and inter-grading hybrid forms in between. Populations
separated by hybrid zones may differ greatly, or sometimes
a few genes seem to be involved; for example, the races
of the mimetic butterfly Heliconius erato that hybridise
in South America, differ by between one and six major
genes affecting wing pattern. A central tenet of evolution-
ary biology has been that the gene flow strongly impedes
divergence, so that species can only form in geographical
isolation. But the existence of sharp, stable clines and hy-

Fig. 9. Final state of the simulation without disruptive se-
lection. No speciation occurs. The parameters are mm = 0.9,
mp = 0.01, S = 0.2 on a 500×500 lattice with random mating.

brid zones shows that gene flow need not destroy spatial
divergence [36,37].

In our case disruptive selection due to the ecological
function in equation (1) prevents hybrid forms. However,
using the following ecological function:

E(x, n) = S ·
∣∣∣g(x) − n

32

∣∣∣ , (2)

hybrids are now favoured and so do not disappear, that
is, there is no speciation as shown in Figures 9 and 10.
From Figure 9 we can observe that the mean value of
the phenotypes changes continuously with the geographic
position x and there is no sharp separation between the
two extreme regions. It is important to say that in using
equation (2) speciation is not obtained even if assortative
mating is included (Fig. 10).

4 Discussion

As reported by Gavrilets [33] the dynamics of parapatric
speciation is very fast (less than 10 000 generations) and
is independent of the mutations rate mp of the phenotypic
trait. We have made some simulations with smaller muta-
tion rates and the time needed to reach a steady state did
not increase for mp > 0.0001.

In our model the ecological function must be disrup-
tive, i.e. individuals with intermediate phenotypes have to
be discriminated. In a non-disruptive ecology individuals
of all phenotypes can adapt to their local environments
and hybrids evolve easily at intermediate x-positions. At
the end of the simulations individuals of all phenotypes
populate the lattice. If the selection against individu-
als with intermediate phenotype numbers is not strong
enough, only an unstable polymorphism appears: the two
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Fig. 10. Final phenotype distribution for simulations with the
ecology function equation (2). The circles display the result
for a run with random mating. Even for a simulation with
assortative mating (squares) gene flux prevents speciation. The
parameters are the same as in Figure 9.

subpopulations coexist with large gene flux between them
until one of them completely dominates and uniformly oc-
cupies the whole lattice.

Different from other speciation models, ours allows
fluctuations of all quantities, which hinders adaptation
and the division of the system into two different pheno-
typic populations, even for intermediate values of the se-
lection pressure. This could explain the not so frequent
occurrence of speciation in Nature, where many environ-
mental factors act on the different population quantities,
like the phenotypic distribution, and where fluctuations
of these quantities are ubiquitous. Even if the conditions
are optimal, speciation remains a statistical event (that is,
for ten different initial random seeds, about five result in
speciation and the other five result in an unimodal pheno-
typic distribution). Speciation is observed frequently for
large lattices, where the phenotype distributions fluctuate
less. Our results suggest that parapatric speciation occurs
preferably in cases where a large population undergoes
a sudden disruptive selection over large geographical dis-
tances compared to the range of individuals movements.

We have studied the effect of assortative mating in
our model, but the final results obtained were nearly the
same as those using random mating, although the rule
of [33] increases the probability of speciation occurring.
Even without assortative mating, only a very small num-
ber of hybrids is born (less than 1% of the total popula-
tion) due to the small range of the mating region (only
between nearest neighbours individuals). Moreover, Fig-
ure 7 shows that these hybrids die mainly at low ages and
do not produce offspring, which can be interpreted as a
form of postzygotic reproductive isolation. In this way a
small gene flow does not prevent speciation in this parap-
atric scenery, even without assortative mating.

5 Conclusions

We present an individual-based model for parapatric spe-
ciation, where individuals with different phenotypes are

distributed on a spatial lattice. Individuals may die due
to genetic diseases or due to a competition for resources
that depends on their phenotypes and on their geograph-
ical positions. Mating occurs only between next nearest
neighbours. Surprisingly, even when considering random
mating, fluctuations due to a disruptive selection may
drive the system to speciation. On the other hand, un-
der very strong disruptive selection, fluctuations prevent
speciation.

In fact, the importance of our approach is that it allows
fluctuations in nearly all quantities. Physicists are very
conscious about the importance of fluctuations in physi-
cal systems, mainly when they present a phase transition,
which can be regarded as a process of bifurcation, like the
speciation process, from a single phase (for instance, gas)
into a state where two different phases coexist (liquid and
vapour). The simplest, naive strategy to deal with such a
phenomenon is the mean-field approach, in which the in-
fluences of the many units of the system over a particular
one are replaced by an average influence or an “average
unity”, disregarding completely all possible fluctuations.
However, this kind of treatment always gives wrong val-
ues for the critical exponents and sometimes signals the
existence of a phase transition when it does not exist,
since the fluctuations that would prevent the transition
are omitted [38]. Concerning the speciation process, such
an approach can predict a speciation event when in fact
it does not occur.
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